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Abstract

A z-stretching finite difference method is developed for simulating the paraxial light beam propagation through a lens in
a cylindrically symmetric domain. By introducing a domain transformation in the z-direction, we solve the corresponding
complex difference equations containing an interface singularity over a computational space for great simplicity and effi-
ciency. A specially designed matrix analysis is constructed to the study the numerical stability. Computational experiments
are carried out for demonstrating our results.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In order to reduce the computational complexity in light beam propagation simulations for practical appli-
cations, different types of approximation strategies are often necessary. In this article, we will take advantage
of several known approximation procedures for paraxial optical waves to derive a highly efficient and robust
numerical method that allows the application of conventional finite difference schemes on a uniform grid in
the computational space, despite the difficulty of an interface presence in the physical domain.
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From Maxwell’s field equations describing the behavior of monochromatic light, we may obtain the follow-
ing time-dependent Helmholtz equation [2,6,7],
r2E � 1

c2

o2E
ot2
¼ 0; ð1:1Þ
where E ¼ Eðx; y; z; tÞ is the electric field intensity, r2 is the Laplacian operator, and c is the phase velocity, or
speed of light in a particular medium.

Let E be the field intensity of a monochromatic plane wave of the form
Eðx; y; z; tÞ ¼ Uðx; y; zÞei2pmt; i ¼
ffiffiffiffiffiffiffi
�1
p

;

where m is the frequency of the light. Then from (1.1) we acquire the time-independent Helmholtz equation
ðr2 þ j2ÞUðx; y; zÞ ¼ 0; ð1:2Þ

where j ¼ 2pm=c ¼ 2p=k is the wave number, and k ¼ c=m is referred as the wavelength. Functions jUðx; y; zÞj
and argðUðx; y; zÞÞ are the amplitude and phase of the wave, respectively [6]. Assume that the z is the direction
of the beam propagation. We may further consider the wave function with a complex amplitude, that is,
Uðx; y; zÞ ¼ uðx; y; zÞe�ijz; ð1:3Þ

where u is referred as the complex envelope. A paraxial wave becomes realistic if the variation of u is slow in the
z-direction.

Substitute (1.3) into (1.2) to yield
r2
Tuðx; y; zÞ � 2ik

ouðx; y; zÞ
oz

þ o2uðx; y; zÞ
oz2

¼ 0; ð1:4Þ
where
r2
T ¼

o2

ox2
þ o2

oy2
is the transverse Laplacian operator. In a paraxial case, we may assume that within a wavelength of the prop-
agation distance, the change in u is sufficiently small compared to juj [17]. Thus,
o
2u

oz2

���� ����� jj2uj
which indicates that
o2u
oz2
� 0:
Therefore we arrive at an approximation of (1.4),
r2
Tuðx; y; zÞ � 2ij

ouðx; y; zÞ
oz

¼ 0; ð1:5Þ
which is frequently called the slowly varying envelope approximation of the Helmholtz equation [1,7,18].
Under the polar transformation r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and / ¼ arctanðy=xÞ, (1.5) can be reformulated to
1

r
o

or
þ o

2

or2
þ 1

r2

o
2

o/2
� 2ij

o

oz

� �
uðr; zÞ ¼ 0: ð1:6Þ
Eq. (1.6) has been utilized frequently in laser beam propagation modelings and computations in the past
decades [7,8,21] (see Fig. 1.1).

Different finite difference, finite element schemes and the spectral method have been widely used in solving
the Helmholtz equations including (1.4)–(1.6). The readers are referred to [2,7,14,21,22] and references therein
for recent discussions in the area. While most of the frequently methods are successful, however, the industry
continuously cries out for algorithmic simplicity, efficiency and reliability for targeted fast engineering



Fig. 1.1. A two-dimensional illustration of the interface of a cylindrically symmetric lens with a flat real surface [20]. We note that the top
corner of the lens area will not cause any difficulty in paraxial computation cases.
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simulations [8,16,20,21]. This motivates a different approach in our study. A typical cylindrically symmetric
domain for spherical lens environments will be employed. For the situation we may assume [7] that
o
2u

o/2
� 0
and consequently, (1.6) can be simplified to yield the complex differential equation
2ij
ou
oz
ðr; zÞ ¼ o2u

or2
ðr; zÞ þ 1

r
ou
or
ðr; zÞ; 0 < r 6 eR1 6 R1 �1: ð1:7Þ
We note that the coefficient of the first spacial derivative term in Eq. (1.7) becomes unbounded as r! 0.
The phenomenon is similar to the degeneracy singularity discussed in [4,19]. Although it will not affect the
overall numerical stability and convergence of our difference scheme developed, and we may ease the
unboundedness by multiplying both sides of the difference scheme by a scaling factor r in real computations,
the singularity in (1.7) will lead to a stiff system of discretizations which requires a special attention from
appropriate stiff solvers. We will leave this interesting issue to a forthcoming discussion. Further, based on
our particular applications, we assume that the wavelength of light, k, is 9.449 lm and that light is incident
from air (refractive index n1 ¼ 1) into glen (refractive index n2 ¼ 1:5) so that we may adopt the following wave
numbers in practical applications [7,20]
jðr; zÞ ¼
j0 ¼ 2pn1

k � 2
3
� 9:97543� 103 cm�1; in medium one;

j1 ¼ 2pn2

k � 9:97543� 103 cm�1; in medium two:

(
ð1:8Þ
The above implies that a coefficient in (1.6), or (1.7), is discontinuous at the lens-interface. Relation (1.8)
represents a single surface situation where the location of the interface is pre-determined. Although there have
been a number of numerical methods for attacking the singular problem, many of them are relatively compli-
cated for practical implementations [5,7,20,21]. It is therefore meaningful to introduce a simple, accurate and
effective numerical method for straightforward computations in many engineering applications. Based on
investigations of the single lens-interface cases, multiple interface scenarios can be discussed with additional
j values [20]. Needless to say, such multiple discontinuities will add a subsequent amount of complexities
to the computation of the numerical solution [4,6,11,20].

Let us employ Neumann boundary conditions
urðz; 0Þ ¼ urðz; eR1Þ ¼ 0; z > z0; ð1:9Þ

at the bottom, r ¼ 0 and top, r ¼ eR1 6 R1 of the physics domain [7,9,12].
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For the initial condition of the differential equations (1.6), (1.7), we adopt the following standard approx-
imation of a Gaussian beam with point source [1,5]
uðz0; rÞ ¼
A

1þ i#
exp ikz0 �

r2

b2ð1þ i#Þ

 !
; ð1:10Þ
where #, b and A are parameters such that
# ¼ 2z0

b2k
;

1

b2
¼ 1

b2
0

þ ik
2z0

; A ¼ eikz0 ;
and b0 is the Gaussian beam width.

2. Base difference scheme and stability

Let 0 6 z 6 Z for (1.7)–(1.10). Further, let h ¼ R1=M ; s ¼ Z=N , where M ;N 2 Zþ are sufficiently large. We
may introduce the uniform grid region,
Xh;s ¼ fðmh; nsÞj0 6 m 6 M ; 0 6 n 6 Ng

over the rectangular domain X used. For the sake of simplicity, we denote rm ¼ mh; zn ¼ ns and
um;n ¼ uðsm; znÞ. In addition, we will use zn�a; 0 < a < 1, for specifying a non-grid point between zn�1 and zn

whenever needed.
Let us start with a linear second-order partial differential equation of the form
c5
o

2u
ozor

þ c4
o

2u
or2
þ c3

ou
or
þ c2

ou
oz
þ c1uþ c0 ¼ 0; ðr; zÞ 2 X; ð2:1Þ
together with (1.9), (1.10). The coefficients ci of (2.1) are functions of z and r and may be discontinuous due to
(1.8).

We propose a six-point, two-level Crank–Nicholson type scheme for solving 2.1 and (1.8)–(1.10),
c5

2hs
½umþ1;n � um�1;n � umþ1;n�1 þ um�1;n�1� þ

c4

2h2
½umþ1;n � 2um;n þ um�1;n þ umþ1;n�1 � 2um;n�1 þ um�1;n�1�

þ c3

4h
½umþ1;n � um�1;n þ umþ1;n�1 � um�1;n�1� þ

c2

s
½um;n � um;n�1� þ

c1

2
½um;n þ um;n�1� þ c0 ¼ 0:
The above can be conveniently reformulated to a partial difference equation
c5

2hs
þ c4

2h2
þ c3

4h

� �
umþ1;n þ � c4

h2
þ c2

s
þ c1

2

� �
um;n þ � c5

2hs
þ c4

2h2
� c3

4h

� �
um�1;n

¼ c5

2hs
� c4

2h2
� c3

4h

� �
umþ1;n�1 þ

c4

h2
þ c2

s
� c1

2

� �
um;n�1 þ � c5

2hs
� c4

2h2
þ c3

4h

� �
um�1;n�1 þ c0: ð2:2Þ
Let w be a sufficiently smooth function defined on X. We define
Pwðr; zÞ ¼ c5

o2w
ozor

þ c4

o2w
or2
ðr; zÞ þ c3

ow
or
ðr; zÞ þ c2

ow
oz
ðr; zÞ þ c1wðr; zÞ þ c0
and
P h;swm;n�1=2 ¼
c5

2hs
þ c4

2h2
þ c3

4h

� �
wmþ1;n þ � c4

h2
þ c2

s
þ c1

2

� �
wm;n þ � c5

2hs
þ c4

2h2
� c3

4h

� �
wm�1;n

þ � c5

2hs
þ c4

2h2
þ c3

4h

� �
wmþ1;n�1 þ � c4

h2
� c2

s
þ c1

2

� �
wm;n�1 þ

c5

2hs
þ c4

2h2
� c3

4h

� �
wm�1;n�1 þ c0:

ð2:3Þ
By expressing the function w at the grid points as Taylor expansions evaluated at reference point rm; zn�1
2

� �
and substituting these into (2.3), it can be shown that
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kðP � P h;sÞwm;n�1=2k ¼ Oðh2 þ h2s2 þ s2Þ: ð2:4Þ
Let r ¼ s=h be bounded and r! 0 as h; s! 0. Then (2.4) ensures

1. the consistency of the finite difference scheme (2.2);
2. a second-order local truncation error of the scheme (2.2);
3. the numerical stability depends on the particular coefficients of the differential equation considered.
Definition 2.1. Consider a homogeneous finite difference scheme written as a system of linear equations as

below:
Bun ¼ Cun�1
or
un ¼ B�1Cun�1
where vector un ¼ fuk;ngM
k¼0 and the difference operators B;C 2 CM�M are coefficient matrices. Let E ¼ B�1C. If

there exists a constant K > 0 independent of n, h and s such that kEnk 6 K for some norm k � k, we say that the
scheme is stable in the Lax–Richtmyer sense [13,15].

Due to the inclusion of a cross-derivative term in our transformed equation, our difference scheme will not
be stable in the Lax–Richtmyer sense. We define a notion of practical stability which holds for a range of prop-
agation step sizes that afford us sufficient resolution in our simulations.

Definition 2.2. Let qðB�1CÞ be the spectral radius of kernel matrix B�1C. If
qðB�1CÞ 6 1
at all propagation steps 0 < ns < T with a transverse direction step size �0 < h < �1 for some �1 > �0 > 0, we
say that the scheme
Bun ¼ Cun�1
is stable within a parameter range.

While this stability condition does not specify a norm for convergence, it does guarantee that perturbations
will not increase exponentially with n.

Definition 2.3. A matrix A 2 Cn�n is said to be positive semistable if every eigenvalue of A has nonnegative real
part.

Theorem 2.4. Let A;B;C;G 2 CM�M be such that
B ¼ Gþ A; C ¼ G� A:
Then the difference scheme defined by
Bun ¼ Cun�1
is stable if and only if G�1A is positive semistable.

Corollary 2.5. Let A;B;C 2 CM�M , d be a positive real number such that
B ¼ dI þ A; C ¼ dI � A:
Then the difference scheme defined by
Bun ¼ Cun�1
is stable if and only if A is positive semistable.

Recall (1.7). We have the corresponding paraxial Helmholtz coefficients for the general Eqs. (2.1) and (2.2),
c5 ¼ 0; c4 ¼ 1; c3 ¼
1

r
; c2 ¼ �2ij; c1 ¼ 0; c0 ¼ 0: ð2:5Þ
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It follows therefore that (2.2), (1.9) and (1.10) can be simplified to the following homogeneous paraxial
Helmholtz difference scheme,
� a 1þ 1

2m

� �
umþ1;n þ ð2þ 2aÞum;n � a 1� 1

2m

� �
um�1;n

¼ a 1þ 1

2m

� �
umþ1;n�1 þ ð2� 2aÞum;n�1 þ a 1� 1

2m

� �
um�1;n�1; ð2:6Þ

um;0 ¼ e�hm=b0 ; ð2:7Þ
� 2au1;n þ ð2þ 2aÞu0;n ¼ 2au1;n�1 þ ð2� 2aÞu0;n�1; ð2:8Þ
ð2þ 2aÞuM ;n � 2auM�1;n ¼ ð2� 2aÞuM ;n�1 þ 2auM�1;n�1; ð2:9Þ
where
a ¼ � si

2jh2
:

Following the analysis method outlined above, we can express our scheme in matrix form
Bun ¼ Cun�1
where B ¼ Gþ A;C ¼ G� A;G ¼ 2I , and A is tridiagonal. Investigating properties of the eigenvalues of
A ¼ fam;ng, where
am;m ¼ 2a; m ¼ 0; 1; . . . ;M ;

am;m�1 ¼ �a 1� 1

2m

� �
; m ¼ 1; 2; . . . ;M � 1;

aM ;M�1 ¼ �2a;

am;mþ1 ¼ �a 1þ 1

2m

� �
; m ¼ 1; 2; . . . ;M � 1;

a0;1 ¼ �2a;
we are able to show that the eigenvalues of matrix A are purely imaginary, and thus have nonnegative real
parts. Thus, A is positive semidefinite. By Corollary 2.5, we can show the following.

Theorem 2.6. Let j be a constant. Then the homogeneous paraxial Helmholtz difference scheme (2.6)–(2.9) is
stable. Further, there is lower boundary restriction on the step size parameter, h, in this case.
3. z-stretching domain transformation

One possible way of avoiding the computational difficulties presented by the discontinuity of j at the inter-
face is by decomposing the domain into three sections, pre-lens, lens, and post-lens, and stretching each seg-
ment by one-to-one transformations onto rectangular areas. We would then be able to use conventional finite
difference techniques, such as that introduced in Section 2, to solve (2.1) together with initial-boundary con-
ditions on each segment. The grid stretch can be achieved either in the direction of electro-magnetic wave
propagation z, or the direction of r. Each of the approaches have distinct advantages. We will only focus
on the former strategy in this paper. In this case, the numerical solution computed at the rightmost edge of
the pre-lens segment becomes the initial condition of the next segment.

Let r ¼ rðn; fÞ; z ¼ zðn; fÞ be the one-to-one stretching transformation to be used. Thus,
ou
or
¼ ou

on
on
or
þ ou

of
of
or
;

ou
oz
¼ ou

on
on
oz
þ ou

of
of
oz
;

o2u
or2
¼ ou

on
o2n
or2
þ o2u

on2

on
or

� �2

þ 2
o2u
onof

on
or

of
or
þ ou

of
o2f
or2
þ o2u

of2

of
or

� �2

:
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A substitution of the above into (1.7) yields
2ij
ou
on

on
oz
þ ou

of
of
oz

� �
¼ ou

on
o

2n
or2
þ o

2u

on2

on
or

� �2

þ 2
o

2u
onof

on
or

of
or
þ ou

of
o

2f
or2
þ o

2u

of2

of
or

� �2

þ 1

r
ou
on

on
or
þ ou

of
of
or

� �
;

which can be regrouped into
2ij
of
oz
� o

2f
or2
� 1

r
of
or

� �
ou
of
¼ �2ij

on
oz
þ o

2n
or2
þ 1

r
on
or

� �
ou
on
þ on

or

� �2
o

2u

on2
þ 2

on
or

of
or

� �
o

2u
onof

þ of
or

� �2
o

2u

of2
:

ð3:1Þ
To map the lens area X ¼ f0 6 z 6 Z; ðz� RÞ2 þ r2
6 R2; r P 0g into a rectangular area eX ¼ f0 6 f 6 Z;

0 6 n 6 R1g, a natural choice is the following transformation,
nðr; zÞ ¼ r; fðr; zÞ ¼ z� Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2
p

Z � Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2
p Z:
In this particular case we have
on
or
¼ 1;

on
oz
¼ 0;

o2n
or2
¼ 0;

of
or
¼ rZðz� ZÞ

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2
p ;

of
oz
¼ Z

q
;

o2f
or2
¼ Zðz� ZÞðqR2 þ 2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2
p

Þ
q3ðR2 � r2Þ3=2

;

where q ¼ Z � Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2
p

. We define functions
/ðn; fÞ :¼ of
or
ðrðn; fÞ; zðn; fÞÞ ¼ ðf� ZÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � n2
p

½Z � ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

p
Þ�
;

wðn; fÞ :¼ o2f
or2
ðrðn; fÞ; zðn; fÞÞ ¼ ðf� ZÞ½R3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

p
ðR2 þ 2n2Þ � Z�

ðR2 � n2Þ
3
2½Z � ðR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

p
Þ�2

;

hðn; fÞ :¼ of
oz
ðrðn; fÞ; zðn; fÞÞ ¼ Z

Z � ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

p
Þ
:

Subsequently, (3.1) can be simplified to
2ijh� w� 1

n
/

� �
ou
of
¼ 1

n
ou
on
þ o

2u

on2
þ 2/

o
2u

onof
þ /2 o

2u

of2
: ð3:2Þ
It can be demonstrated that at every point in the transformed lens segment, we have
/2 o2u

of2

���� ���� 6 R2
1Z

ðR2 � R2
1Þ Z � R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

1

q� �� 	 o2u
oz2

���� ���� � 0:
Thus, for a typical lens where the slowly varying envelope approximation is applicable, (3.2) can be simpli-
fied to a more appropriate form for computations within the transformed lens area,
2ijh� w� 1

n
/

� �
ou
of
¼ 1

n
ou
on
þ o2u

on2
þ 2/

o2u
onof

; n > 0: ð3:3Þ
Again, we notice that the function 1=n becomes unbounded if n is arbitrarily small. This may indicate a
considerably strong stiffness of the system of linear equations generated via z-stretching type of discretizations
if the spacial step is chosen to be small.
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In Fig. 3.1, we illustrate the z-stretching by showing an example of the grid within the lens before and after
the stretching. It is evident that the transformation enables the six-point scheme to work accurately and effi-
ciently. Instead of (2.5), now we have the following set of adjusted coefficients for the in-lens segment differ-
ence scheme,
c5 ¼ 2/; c4 ¼ 1; c3 ¼
1

n
; c2 ¼ �2ijhþ wþ 1

n
/; c1 ¼ 0; c0 ¼ 0:
Subsequently, (2.6) can be modified to
�c
2/
h
þ a 1þ 1

2m

� �� 	
umþ1;n þ ð2þ 2acÞum;n � c � 2/

h
þ a 1� 1

2m

� �� 	
um�1;n

¼ c � 2/
h
þ a 1þ 1

2m

� �� 	
umþ1;n�1 þ ð2� 2acÞum;n�1 þ c

2/
h
þ a 1� 1

2m

� �� 	
um�1;n�1; ð3:4Þ
where
a ¼ s

h2
and c ¼ cðn; fÞ ¼ 2ijh� w� 1

n
/

� ��1

: ð3:5Þ
In this method, the Gaussian beam input equation is evaluated at the lens surface, and becomes the initial
solution of the simulation at the edge of the lens segment. No computation is necessary in the pre-lens seg-
ment. The solution at the right edge of the lens segment becomes the initial solution of the post-lens segment,
which we simulate using the homogeneous scheme described earlier. To reduce the unboundedness of the coef-
ficients due to the step size h, we may scaling (3.4) by multiplying both sides of the equations by h. This will not
change the stiffness of the linear system obtained, but it does improve the numerical computations signifi-
cantly, as far as an appropriate stiff solver is employed.

To determine the boundary conditions applicable within the lens segment, note that
ou
or
ðn; fÞ ¼ ou

on
ðn; fÞ on

or
ðn; fÞ þ ou

of
ðn; fÞ of

or
ðn; fÞ;
thus
0 Z
z

r

Lens Segment: Physical Space
R1

0 Z
x

y

Lens Segment: Computational Space

R1

Fig. 3.1. Left: An in-lens domain before a z-stretching. Right: The in-lens domain after a z-stretching.
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ou
on
ð0; fÞ ¼ ou

on
ðeR1; fÞ ¼ 0; 0 < f < Z: ð3:6Þ
It is interesting to note that for a lens that tapers to a point at the top, the geometric interpretation of this
new boundary condition is that the single point ðeR1; ZÞ has been stretched into the upper edge of our trans-
formed rectangular domain, i.e. the upper boundary in the computational space corresponds to the single
point ðeR1; ZÞ in the physical space.

To demonstrate stability, we use the matrix analysis method introduced in the previous section. For our
scheme Bun ¼ Cun�1, we have B ¼ Gþ A;C ¼ G� A with matrix G ¼ fgm;ng and A ¼ fam;ng, where
gm;m ¼ 2; m ¼ 0; 1; . . . ;M ;

gm;m�1 ¼
2c/

h
; m ¼ 1; 2; . . . ;M � 1;

gM ;M�1 ¼ 0;

gm;mþ1 ¼
�2c/

h
; m ¼ 1; 2; . . . ;M � 1;

g0;1 ¼ 0;

am;m ¼ 2ac; m ¼ 0; 1; . . . ;M ;

am;m�1 ¼ �ac 1� 1

2m

� �
; m ¼ 1; 2; . . . ;M � 1;

aM ;M�1 ¼ �2ac;

am;mþ1 ¼ �ac 1þ 1

2m

� �
; m ¼ 1; 2; . . . ;M � 1;

a0;1 ¼ �2ac:
Examining the real part of function cðn; fÞ resulting from our chosen transformation, we see that matrix A

is positive semistable. This property will still hold if the transformation is adapted to other convex lens shapes.
If we have a transverse step size h such that
h > 2sjcðn; fÞ/ðn; fÞj for 0 6 n 6 R1; 0 6 f 6 Z;
or equivalently, if the number of grid points in the n direction, M , is such that
M <
R1

hmin
where
hmin ¼ 2s max
n;f
jcðn; fÞ/ðn; fÞj
then matrix Gþ G	 is positive definite. Then based on Theorem 2.4, we can prove the following.

Theorem 3.1. Let j be discontinuous as given by (1.8) and
h > 2sjcðn; fÞ/ðn; fÞj for 0 < n 6 eR1; 0 < f 6 Z:
Then the difference scheme (3.4)–(3.6) is stable on z-stretched domains.

The theorem posts a restriction on the value of s=h, though this condition is relatively easy to satisfy.
For the parameter values utilized in our simulations,
j ¼ 9:97543� 103; R ¼ 1:969; Z ¼ 0:7643; R1 ¼ eR1 ¼ 1:5574; ð3:7Þ



Table 3.1
Maximum grid points in the transverse direction with R ¼ 1

Z k ¼ 8000 k ¼ 10000 k ¼ 12000

0.1 7439 9365 11279
0.3 5642 7046 8848
0.5 4059 5064 6068
0.7 2496 3104 3711
0.9 1033 1257 1479
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Fig. 4.1. Normalized initial value function uðr; 0Þ. Red (or dark colored) curve is for the real part and green (or light colored) curve is for
the imaginary part of the function. Highly oscillatory features of the function is clear. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 4.2. Real part of the simulated solution at the center point r ¼ 0. The numerical solution increases rapidly as z approaches the
focusing location. Then the simulated oscillatory wave diffuses after the focusing point.
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we need M 6 1:2092� 104. We list a sampling of maximum grid points M for other parameter values (see
Table 3.1).
4. Simulation results and observations

All simulated results were implemented on dual processor DELL workstations with at least double precision.
MATLAB, FORTRAN and C++ programming languages were utilized. Dimensionless models are used throughout
the computations. For the sake of simplicity, we do not tend to re-scale numerical solutions back to their ori-
ginal physical dimensions in simulations (see Fig. 4.1).
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Fig. 4.3. More detailed real part of the simulated solution near the focus point, r ¼ 0. Same conditions as in Fig. 4.2 are used.
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Fig. 4.4. Imaginary part of the simulated solution at the center point r ¼ 0. The numerical solution increases rapidly as z approaches the
focusing location. Then the simulated oscillatory wave diffuses after the focusing point.
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In the following numerical experiments we use parameters (3.7) listed in the previous section. We further
select h ¼ R1=M where M ¼ 5� 103 and s ¼ Z=N where N ¼ 1:6� 104 in the six-point scheme used in the
computational solution space after a designated z-stretching.

We show the real part of the simulated solution, aðzÞ ¼ realfuð0; zÞg, in Figs. 4.2 and 4.3. We may observe
that while the function value of a is relatively stable before the focusing point zf � 0:94778, it increases dra-
matically as z! zf . This can be viewed more precisely in the enlarged picture of Fig. 4.3.

Figs 4.4 and 4.5 are devoted to the imaginary part of the numerical solution, bðzÞ ¼ imaginaryfuð0; zÞg.
Similar to the real part, b is relatively stable before the focusing point zf � 2:7431 and is highly oscillatory
as z! zf . The phenomenon can be viewed more clearly in the enlarged picture of Fig. 4.5.
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

−80

−60

−40

−20

0

20

40

60

80

100

z

w
 =

 im
ag

in
ar

y(
u)

imaginary part of the solution

Fig. 4.5. More detailed imaginary part of the simulated solution near the focus point, r ¼ 0. Same conditions as in Fig. 4.4 are used.
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Fig. 4.6. Numerical intensity function of the simulated solution at the center point r ¼ 0. The intensity increases rapidly as z approaches
the focusing location. Then the intensity value diffuses out after the focusing point.
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Fig. 4.7. More detailed numerical intensity function of the simulated solution near the focus point ðr ¼ 0Þ. Same conditions as in Fig. 4.6
are used.
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Fig. 4.8. Highly oscillatory numerical intensity function of the simulated solution at the focusing location z ¼ 2:7431. The computed
intensity increases exponentially near the center, as compared with much lower profiles away from the focusing area.
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Define the numerical intensity function as
T ðr; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
real2½uðr; zÞ� þ imag2½uðr; zÞ�

q
P 0; 0 6 r 6 R1; 0 6 z 6 Z: ð4:1Þ
In Figs. 4.6 and 4.7 we plot this intensity function against the propagation direction z as r being chosen as
zero. It is interesting to find that the intensity increases rapidly as z! zf . The observation is consistent with
our previous results.

As a comparison, we further plot the numerical intensity function at the locations near and at the focusing
point in Figs 4.8 and 4.9. It is observed that the numerical estimate of the intensity oscillates rapidly in the r-
direction. The intensity increases sharply near the center point of the lens, r ¼ 0, while z approaches the
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Fig. 4.9. Details of the highly oscillatory numerical intensity function of the simulated solution at z ¼ 0:7643. The intensity builds up near
the center of the lens at r ¼ 0.
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focusing point location. The simulated wave profiles well match the experimental results. The algorithms can
be used to provide reference values for further explorations.
5. Conclusions and remarks

In this investigation, we have developed a z-stretching domain transformation to map the lens and post-lens
domains into convenient rectangular shapes, where we can utilize well established finite difference methods on
uniform grids. The resulting method provides a useful approximation technique that can be efficiently imple-
mented with less than 50 lines of Matlab code in the simulation loops. This simplicity is extremely useful in fast
engineering computations and simulations. Although a stiff system solver is needed, this does not add extra
inconvenience due to many commonly available programming packages. The stretching schemes have demon-
strated extremely stable and accurate in computational experiments, and the solutions obtained have met well
physical expectations.

A more powerful strategy may be the use of optimally combined z and r stretching transformations to
increase computational resolution and accuracy of the numerical solution in critical local regions. Magnifying
a particular subregion in the transformed coordinate space is computationally equivalent to increasing the
refinement of the grid in that region using techniques such as adaptive mesh refinement [3,19] and scattering
[16]. Alternatively, domain transformation could facilitate the use of established adaptive grid techniques,
since applications of standard mesh refinement or moving mesh technics are straightforward on rectangular
domains [10,19]. The technique may also provide an effective way for solving problems in which locations
of interfaces are not pre-determined. More precise studies on degeneracy singularities have also been carried
out and have made excellent progress. Further, hyperbolic smoothness maps have also been proved to be
extremely useful auxiliary tools to consider in practical optical beam and acoustic computations [20,22].
Detailed discussions will be given in our forthcoming reports.
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